Reduction of benzoyl tributylphosphonium chlorides by samarium diiodide as a novel access to 4-benzoylbenzaldehydes

Hatsuo Maeda,* You Huang, Nagomi Hino, Yuji Yamauchi and Hidenobu Ohmori

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan

Received (in Cambridge, UK) 6th September 2000, Accepted 17th October 2000 First published as an Advance Article on the web 9th November 2000

Addition of samarium diiodide to a well-stirred THF solution of benzoyl tributylphosphonium chlorides generated *in situ* **from benzoyl chlorides and tributylphosphine at** 2**40 °C gave 4-benzoylbenzaldehydes as predominant products from benzoyl chlorides without** *para***-substituents, while benzoyl chloride bearing** *p***-methyl or chloro groups** was exclusively converted into the corresponding α -dike**tone.**

Recently it was found that the reduction potentials of alkanoyland benzoyltributylphosphonium ions (**1** and **2**, respectively) (Scheme 1), anodically generated from carboxylic acids and tributylphosphine (Bu3P) or formed from acid chlorides and $Bu₃P$, are much more positive than those of the corresponding acid chlorides;1,2 hence **1** and **2** are converted into aldehydes without over-reduction to alcohols by reduction using a cathode,¹ Zn or Zn–Cu couple³ more feasibly than the corresponding carboxylic acids or acid chlorides. In addition, electrochemical reduction of **1** was shown to provide a novel tool for the generation of acyl radical or acyl anion equivalents, which are utilized in intramolecular C–C bond formation.4 However, the synthetically intriguing species generated from **1** or **2** have not been applied to intermolecular reactions. This is probably because **1** and **2** are highly reactive acylating reagents.4–6 During electrochemical generation of an acyl radical or acyl anion equivalent from **1** or **2**, excess of the acylating reagent remains. Such circumstances may have induced formation of a complex mixture in the cathodic reaction of **1** or **2** with an electrophile or radical acceptor through acylation of all anionic species generated during the electrolysis. Thus, it is speculated that an immediate and total transformation of **1** or **2** into the corresponding acyl radical or acyl anion equivalent prevents such an undesired process. It was reported that benzoyl chlorides **3** were reduced by samarium diiodide $(SmI₂)⁷$ as a one-electron reducing reagent, leading to formation of the corresponding α -diketones (5).^{8,9} Based on the reduction potentials, it was postulated that **2** will be more feasibly reduced by SmI₂ than the corresponding 3, namely, that SmI2-reduction will satisfy the above requirement for the reduced species of **2** to enter intermolecular reaction. Thus, we

examined the reduction of 2 itself by $SmI₂$ as a preliminary study to develop the intermolecular reaction of an acyl radical or acyl anion equivalent generated from **1** or **2**, and obtained interesting results different from those for the case of **3** itself. We report herein that SmI_2 –reduction affords benzoylbenzaldehydes **4** as predominant products from **2** without *para*substituents and **5** exclusively from **2** bearing *para*-substituents (Scheme 1).

It was reported that **4** can be prepared by the following methods: (1) SmI2-induced coupling of benzaldehydes followed by PDC oxidation;10 (2) benzylic bromination of 4-methylbenzophenone followed by periodate oxidation;11 (3) oxidative transformation of 4-methylbenzophenone into the corresponding benzaldiacetate followed by acid hydrolysis,12,13 (4) photolysis of benzaldehyde–cyclodextrin complexes in the solid state.12 However, the following factors seem to attenuate their synthetic utilities: in the first method, the yields of coupling products from substituted benzaldehydes were rather low; it is unlikely that starting materials with a variety of substituents for the second and the third methods are easily available; the fourth method was applied only to unsubstituted benzaldehyde and its generality is unknown. Thus, it is worthwhile developing a simple and general method for preparing **4**, taking into consideration not only the drawbacks of these methods but also the facts that **4** was used as an important intermediate for synthesis of an HIV-1 integrase inhibitor 11 and antifungal agents.14

The typical procedure is as follows: to a THF solution of **3** (1.0 mmol) cooled to -40 °C, Bu₃P (1.1 mmol) was added under an argon atmosphere and the resulting mixture was stirred for 20 min. To the vigorously† stirred mixture, a THF solution (0.1 M, 20 ml) of SmI2 was added using a syringe. After stirring for 5 min at the same temperature, the reaction was quenched by addition of 1 M HCl (5 ml). The entire mixture was poured into H₂O (20 ml) and extracted with ether (50 ml \times 3). The combined organic layer was washed with 5% K_2CO_3 and brine (40 ml each), and dried over MgSO4. After removal of the solvent, the residue was subjected to column chromatography (SiO2, hexane–AcOEt). Thus obtained products were characterized by 1H-NMR, 13C-NMR, IR, and mass spectra or by comparison with spectroscopic data in the literature.10,11,15 The regiochemistry in **4b**, **4c**, **6**, and **4f** (*cf*. Table 1) was tentatively assigned to be *para* with respect to the aldehyde groups, based on the results for **2** with *para*-substituents as described below.

The results obtained for benzoyltributylphosphonium chlorides **2** derived from several benzoyl chlorides **3** are shown in Table 1. Reduction of phosphonium chloride 2a with SmI₂ afforded keto aldehyde **4a** as a sole product in an excellent yield (run 1). Without *in situ* transformation into **2a**, benzoyl chloride was converted only to the corresponding α -diketone in 38% yield under essentially the same conditions, suggesting that reduction of 2 by SmI₂ proceeds in a different manner from that of **3** itself. Similarly, **2b** and **2c** bearing *o*- or *m*-methyl groups were transformed into **4b** and **4c**, respectively, in excellent yields, although formation of the corresponding α -diketone in small amounts was noted (runs 2 and 3). In contrast to the case of **2b** and **2c**, reduction of **2d** with a *p*-methyl group resulted in **Scheme 1** exclusive formation of α -diketone **5d** (run 4), suggesting that

Table 1 Reduction of benzoyl tributylphosphonium ions (**2**) *in situ* generated from benzoyl chlorides and $\overrightarrow{Bu_3P}$ by $\overrightarrow{SmI_2}$

SmI2-reduction of **2** favors formation of **4** *via* coupling at the *para*-position. In reaction with SmI2, **2f** and **2g** with *m*- or *p*chloro groups exhibited a tendency similar to **2c** and **2d**; in the former case, **4f** was obtained as a major product and the latter case predominantly afforded α -diketone **5g** (runs 6 and 7). Interestingly, reduction of **2e** bearing an *o*-chloro group led to the formation of a triply coupled product **6** in 50% yield (run 5). These results demonstrated that SmI2-reduction of **2** provided a novel access to **4** from **3** without *para*-substituents, and the transformation seems to prefer electron-donating substituents to electron-withdrawing substituents on the aromatic ring of **3**. It should be mentioned here that the decanoyl tributylphosphonium ion (1 with $R = n-C_{10}H_{21}$ in Scheme 1) generated from decanoyl chloride and Bu_3P was reduced under essentially the same conditions, affording only decanal in 39% yield.

For formation of 4 by SmI_2 -reduction of 2 , two plausible routes can be considered as depicted in Scheme 2, although the detailed mechanism is not clear at present. By one-electron reduction, characteristic of SmI2,7 a neutral radical **7** would be formed from **2**. One of the routes to **4** includes a head-to-tail coupling of the radical (route A). The other comprises radical addition of **7** to **2** (route B). When the procedure with a reverse addition was utilized, namely, when **2** was added to a THF solution of SmI_2 cooled at -40 °C, the yields of 4 were markedly decreased: **4a** (57%) and benzil (9%) from **2a**; **4b** (33%) and **5b** (61%) from **2b**; **4c** (32%) and **5c** (61%) from **2c**. These results suggest that effective formation of **4** needs generation of **7** in the presence of excess **2**, namely, that route B is more likely than route A. In addition, route B seems to provide a reasonable explanation that formation of the triply

coupled product **6** is initiated by addition of a radical such as **10** to **2**.

Since benzoyl chlorides **3** with a wide variety of substituents are commercially available and the present transformation is carried out in one-pot, the $SmI₂$ reduction of benzoylphosphonium ions **2** is thought to be more straightforward and applicable for the preparation of various types of **4**. Further work is under way to examine the generality of the present methodology as a method of preparing **4** and to shed light on the mechanism of its formation.

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (B) (10208205) from the Ministry of Education, Science, Sports, and Culture, Japan.

Notes and references

† Vigorous stirring was essential for the formation of **4** in high yields, when SmI2 was added to a THF solution of **2**.

- 1 H. Maeda, T. Maki and H. Ohmori, *Denki Kagaku oyobi Kogyo Butsuri Kagaku*, 1994, **62**, 1109.
- 2 H. Maeda, K. Takahashi and H. Ohmori, *Tetrahedron*, 1998, **54**, 12 233.
- 3 H. Maeda, T. Maki and H. Ohmori, *Tetrahedron Lett.*, 1995, **36**, 2247.
- 4 H. Maeda and H. Ohmori, *Acc. Chem. Res.*, 1999, **32**, 72.
- 5 E. Vedejs and S. T. Diver, *J. Am. Chem. Soc.*, 1993, **115**, 3358.
- 6 E. Vedejs, N. S. Bennett, L. M. Conn, S. T. Diver, M. Gngras, S. Lin, P. A. Oliver and M. J. Peterson, *J. Org. Chem.*, 1993, **58**, 7286.
- 7 For reviews, H. B. Kagan and J. L. Namy, *Tetrahedron*, 1986, **42**, 6573; J. Inanaga, *Yuki Gosei Kagaku Kyokaishi*, 1989, **47**, 200; J. A. Soderquist, *Aldrichimica Acta*, 1991, **24**, 15; G. A. Molander, *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 1, pp. 251–282; G. A. Molander and C. R. Harris, *Chem. Rev.*, 1996, **96**, 307.
- 8 P. Girard, R. Couffignal and H. B. Kagan, *Tetrahedron Lett.*, 1981, **22**, 3959.
- 9 J. Collin, J.-L. Namy, F. Dallemer and H. B. Kagan, *J. Org. Chem.*, 1991, **56**, 3118.
- 10 J.-S. Shiue, M.-H. Lin and J.-M. Fang, *J. Org. Chem.*, 1997, **62**, 4643.
- 11 H. Zhao, N. Neamati, Y. Pommier and T. R. Burke, Jr., *Heterocycles*, 1997, **45**, 2277.
- 12 V. P. Rao and N. J. Turro, *Tetrahedron Lett.*, 1989, **30**, 4641.
- 13 S. B. Liberman and R. Connor, *Organic Syntheses*, 1943, **Coll. Vol. II**, 441.
- 14 G. Philippe, J. Synese and Z. Rene, EP 401798 A2/1990 (*Chem. Abstr.*, 1990, **114**, 246961).
- 15 M. Okimoto, T. Itoh and T. Chiba, *J. Org. Chem.*, 1996, **61**, 4835.